
HUNTSVILLE RESEARCH & ENGINEERI'NG CENTERA-.

LOCKHEED MISSILES & SPACE COMPANY,,:?NC'.,:~
- ~ A SUBSID IA R Y OF LOCKHEED AIRC R AFT CO R PO R ATIO N -

a ASAaCR 124050) CONTROL SYSTE3
OP TIMIZATIONSTUDIES., VOLUME 1: PAYLOAD N73-1886
DEPr'.zLOYMNT STUDY Final Report, I Jul.
(1971,o 6 Mar. 1972 (Lockheed MisslsUca

and S a ' s s lles~~~~

- - - - - - I I - ,
-- ,



HREC-0515-6
LMSC-HREC" D2 2 564Z - I

LOCKHEED MISSILES & SPACE COMPANY

HUNTSVILLE RESEARCH & ENGINEERING CENTER

HUNTSVILLE RESEARCH PARK

4800 BRADFORD DRIVE, HUNTSVILLE, ALABAMA

CONTROL SYSTEM OPTIMIZATION
STUDIES

FINAL REPORT

VOLUME I

PAYLOAD DEPLOYMENT STUDY

March 1972

Contract NAS8-30515
(Appendix F)

Prepared for National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812

by

G.M. Heeschen
A.M. Hansing

APPROVED:ED: X r
W. Trautwein, Supervisor

Flight Dynamics & Control Section

77;r4
T. R. Beal, Manager

Dynamics & Guidance Dept.

/. .S. Farrior
11sident Director



LMSC-HREC D225642-I

FOREWORD

This report presents results of the fourth in a series of studies

to analyze earth orbital maneuvers including stationkeeping and dock-

ing. The work was performed by Lockheed's Huntsville Research &

Engineering Center for NASA-Marshall Space Flight Center under

Contract NAS8-30515. The three previous studies are documented

in References 1, 2 and 3.

The present study was performed during the period 1 July 1971

to 6 March 1972 in accordance with Modification 9 of Appendix F. A

second independent study- "High Frequency Cutoff Filter Analysis,"

was completed under this same contract and is documented in Volume II.

The NASA-MSFC technical coordinators for the study were Mr.

E.C. Smith and Mr. M. Brooks of S&E-ASTR-SG.
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Section 1

INTRODUCTION AND SUMMARY

Many space missions planned for the future will require orbiting space

vehicles to maneuver in close proximity (less than 1000 meters) to each other.

Mission tasks requiring such maneuvers include stationkeeping, docking, orbital

assembly, satellite inspection and retrieval, and payload deployment. Before

a system is designed to perform these tasks, the critical parameters must be

defined and alternative concepts investigated. Some major variables include

mass and inertia properties, vehicle geometry, sensor data (amount and accu-

racy), reaction control system sophistication and manual involvement in the

control loop.

During this study a simulation capability was developed to evaluate the

alternative methods and hardware proposed to accomplish the tasks described.

The fixed base simulation is performed on a hybrid computer, and includes a

cathode ray tube display so that the maneuvers can be visually monitored by a

pilot located in the active vehicle. Both automatic and manual control modes

are included and the pilot can switch between these two modes at his discretion.

Major simulation components which were developed in previous studies are:

(1) Equations for generating the CRT display (Ref. 1); (2) two-burn translation

logic for automatic docking (Ref. 2); and (3) baseline automatic attitude control

system (Ref. 3).

A complete description of the hybrid simulation is presented in Section 2,

and simulation results are described in Section 3. Major digital subroutines

are described and flow charted in Appendix A, and the analog wiring diagrams

are presented in Appendix B.

1-1
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Section 2

PROGRAM DESCRIPTION

2.1 GENERAL DISCUSSION

The hybrid computer program developed during this study simulates

the motion of a chase vehicle as it maneuvers for stationkeeping, inspection,

or docking relative to a target vehicle. A typical docking situation is illus-

trated in Fig. 2-1. The target vehicle is assumed moving in a circular earth

orbit with its attitude fixed relative to some reference axis (either the local

vertical coordinates pictured or an inertial frame). Chaser six-degree-of-

freedom motion is controlled with attitude and translation reaction control

ZB
x (3)

x (3) + ~~~~Chaser
Parallel to Orbit ChaserCenter of
Angular Momentum MassMas s

Target Center Viewing Port7-
of Mass 

ZT

XB
x(1) YB

Extending A To
Radially from Earth
Center of Earth

X T

\
Y \, x (2)

T Along Target
Velocity Vector

Fig. 2- 1 - Typical Docking Situation

2-1
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thrusters and is disturbed by gravity gradient torques. Translation and atti-

tude maneuvers are limited by analog scaling as follows:

Maximum Range = 1000 meters

Minimum Range = Precontact

Maximum Velocity = 5.0 meters/second

Maximum Angular Rate = 0.1 radians/second

Five major program options are listed below.

1. Chaser Control Mode

* Automatic
* Manual
* Real time switching between automatic

and manual control at the pilot's discretion.

2. Target Attitude

* Local vertical hold
* Inertial hold

3. Sensor Accuracy

* Perfect sensors
* Effect of sensor inaccuracies introduced

through measureables

4. Application of Control Forces

* Applied along body axes
* Applied along local vertical axes
* Set identically equal to zero

5. Automatic Control Torques

* From baseline attitude control laws
* Set identically equal to zero.

Computer runs involving pilot interaction (manual and switching control

modes) must be made in real time. Runs which use purely automatic con-

trol, however, can be made at accelerated run speeds (currently 10 times

real time) to achieve a savings in computer time.

2-2
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Figure 2-2 is a block diagram which shows the major elements of the

hybrid simulation. This figure also shows how the work load is distributed

between pilot, digital computer, and analog computer. Sections 2.2 - 2.6

further describe the program operation and capabilities. A summary of re-

sults is presented in Section 3.

Major digital subroutines are described and flow charted in Appendix A,

and the analog wiring diagrams are documented in Appendix B.

2.2 TARGET DISPLAY AND DOCKING CONDITIONS

A representation of the target vehicle is generated on a CRT display

scope for visual feedback to the pilot. In the present display the target is

represented by a cylinder. A bright spot on one of the cylinder end circles

represents a docking target and defines the front face. Clues as to the rela-

tive target attitude are obtained from spot location, direction of the cylinder

centerline, flattening of the end circles, and relative size of the end circles.

The overall display size gives range information. The pilot attempts to fly

into the cylinder front face along the cylinder centerline which is assumed to

be the docking axis. The angular field of view displayed on the scope is a

program input called aF. All display elements are normalized by aF before

positioning on the screen.

Figure 2-3 illustrates the cylindrical representation of the target.

RHOZM, RHOZP and RADIUS are program inputs. During the simulation the

target holds a constant input attitude relative to some reference frame (inertial

or local vertical) as shown in Fig. 2-4. Normally, during checkout runs the

target is kept aligned with the local vertical coordinates so that the docking

axis (-XT) is directed toward the earth. The chase vehicle is considered

docked, and the run terminated automatically when the range to the target

front face is less than some input value, PM1.

During periods of automatic control the chase vehicle translates to a

rendezvous point located along the docking axis and defined by the input vari-

able PM2. When PM2 is greater than PM1, docking can only be completed

2-3
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Fig. 2-2 - Block Diagram of Hybrid Docking Simulation
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Fig. 2-3 - Cylindrical Representation of Docking Target

ZT Z
ref

Target Center of Mass

Yref

Xref

Target Front Face

Docked Position (PM1)

Rendezvous Point (PMZ)

Docking Axis

-XT

Fig. 2 - 4 - Docking Geometry
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by switching to manual control. Nominal data for the target display and

docking conditions is shown in Table 2-I. The input value for aF was com-

puted as follows so that after a perfect dock the target front face will just

fill the CRT display scope.

aF tan- 1 RADIUS
F = tan PM1

Table 2- 1

NOMINAL TARGET AND DOCKING DATA

Input Name Nominal Value

RHOZM 5.0 m
RHOZP 5.0 m
RADIUS 3.0 m
PM1 1.732 m
PMZ 2.0 m
ALFAF (aF) 1.05 rad

2.3 CHASE VEHICLE EQUATIONS OF MOTION

The chaser equations of motion are solved on the analog computer.

These equations are described briefly below and the detailed wiring diagrams

are shown in Appendix B.

0 Translation Equations - The translation equations are solved in local

vertical coordinates and were derived by Clohessy and Wiltshire (Aerospace

Science, September 1960).

X(1) =m F + Zc0(2) + 3cw x(1)
mlI

x(2) = m 2 w c (l)
m

x(3)= -F -F x(3).m 3

The terms x(1), x(2) and x(3) are the local vertical coordinates defined in Fig.

2-1. The F. are control forces, m is the chaser mass, and co is the target
1

orbital rate in radians per second. A dot above a variable indicates differ-

entiation with respect to time. The cross-coupling terms which are all a

function of o can be removed from the simulation with a simple switch.

2z-6
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* Rotational Equations - Body angular rates (P,Q and R) are computed

as shown below. Note that body axes are assumed to be principal axes.

I P + (I - Iyy) QR = TC + TGxx zz yy x

I Q + (Ixx - Izz) PR = TC + TGyy xx zz y y

I + (I yy I x) PQ = TC + TGIzz zy xxz

Control torques, TC, and gravity gradient torques, TG, are computed on the

digital and sent to the analog separately to facilitate scaling.

* Kinematic Equations- The chaser attitude is computed by integrating

a set of four Euler parameters which relate body axes to inertial axes. These

equations have no singularities so that all attitudes can be simulated. Ortho-

gonality is assured by forcing the sum of the squares to equal one. This is

all done continuously on the analog.

Nominal values for chaser mass properties, control

torques are shown below.

forces, and control

2-7
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Chaser
Parameter Nominal Value

Mass 1.264 x 10 kg

I 4.Z03 x 106 kg-m2xx

I 2.052 x 10 7 kg-m2
Yy

Izz 2.319 x 107 kg-mr
zz

F. 7.340 x 10 N
1

TC 2.712 x 104 N-m
x

TC 5.762 x 10 N-m
y

TC 5.084 x 104 N-m
z
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2.4 AUTOMATIC CONTROL

The control laws for attitude control during automatic docking were de-

veloped and incorporated into the simulation during a previous study (Ref. 3).

These control laws are sub-optimal when the minimum impulse bit is one-

third of the digital sampling interval, but they do not include the effects of

system time delays. When the automatic and manual modes were combined

to permit switching, a 0.14 second system time delay was introduced into the

automatic mode. This was necessary to ensure comparability between auto-

matic and manual control. The time delay caused rate overshoot during the

elimination of attitude errors and also introduced limit cycle behavior while

the chaser was in attitude hold.

This problem was remedied without sacrificing system accuracy by

compensating for the time delay in the control logic. Figure 2-5 shows time

histories of the chaser angular accelerations and angular rates with and with-

out the control law modifications. These runs were initialized with a 10-

degree attitude error about each of the chaser axes. The cause of instability

and the control law modifications required to eliminate it are discussed below.

The optimum switching lines derived in Ref. 3 are valid for only a very

restricted number of inputs. Two categories of imperfection may arise:

1. Errors, miscalculations, and finite time delays in the com-
puting elements required to generate the optimum switching
line, sense the state of the system, and switch the torque at
the proper instant.

2. The effects of system inputs or loads other than those used to
derive the optimum switching line.

These imperfections will cause slightly nonoptimum switching which, in turn,

may permit the state of the system to overtravel the switching line, reverse,

overtravel again, and so forth. The system state then approaches equilibrium

while executing a high frequency oscillation in the vicinity of the switching

line. As an example, the effect of time delay is shown in Fig. 2-6. In this

2-8
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case the actual switching line is a parabola of the same shape as the optimum

(commanded) switching line but displaced from it in both the E and E directions.

From this example we see that late switching caused by system time delays

will produce wasteful firings by the control system.

E

Trajectory Approaches
Terminal Limit Cycle

, g-- E

Optimum Switching
' Line (Commanded)

L Delayed Switching
Line (Actual)

Fig. 2-6 - Phase Plane Description of How System Time Delays Affect
the Control Logic Switching

The equation of the parabolic trajectory in the lower half plane follow-

ing a step input is

*Z 2LE= I (E - Eo )

where I and L are the moment of inertia and torque about the axis of

interest and E o is the initial error. In the phase plane E = dE/dt or

dt = dE/E. Therefore, in the lower half plane,

t=JE

E
0

dE
_t _

I_ 2 (E - E o )

2-10
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and we can express E and E as follows:

Lt 2
E= -Lt + E

2I o

E Lt
E=

If we use the subscript sw to denote system conditions at the switching point,

the switching line can be expressed as:

I sw) (1)
Esw - (ZL SW

also

L (tw2B - (t ) + E
sw 2I SW + Eo

Lt
SW- sw

Esw I

Now the time at which the torque reversal actually takes place is delayed

beyond the time tSw, by the time delay, 'r, so that the delayed switching

line occurs at

Lt'E, = SW =. L7'

sw I sw I

L(t' )2 2
E Sw + E = E + (Esw)+ 2Isw 2I o sw sw 21

or

+LT'
Esw sw I

E sw sw 2 + zij

2-11
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Substituting into Eq. (1)

- + sw +sw z r LI I -ZS ESW + I 2 L sw I

rearranging, we get

LT
2

sw - = L sw + 2I

This is the trajectory of the lower delayed switching line - with apex occur-

ring E' = -L.'2 /Z and E' = -2Lr/I. Similarly, the trajectory of the
upper delayed switching line isupper delayed switching line is

L7' ~~IE' _Isw I -ZL

Its apex occurs at E' = -L ' /Z and EW = ZLT/I
SW SW

The original optimum switching lines were designed for zero time delay.

In order to compensate for the effect of a constant time delay, it was neces-

sary to advance the switching time by an amount exactly equal to the time

delay. We now let t'" be an advanced switching time which occurs r

seconds prior to tsw. Then the advanced switching line occurs at

LWI
, ,, L(tsw) L7'
sw I sw I

L(t )
E" = - sw + E = E

SW 2 EI 0 Esw
-(O· + L72

- (E sw) r + I

i = *iit L7'r
sw sw I

LT
2Esw = ESW + (Esw)'- - 2 I

2sw -12
2-12

LOCKHEED -HUNTSVILLE RESEARCH & ENGINEERING CENTER

or

(2)

(3)

[Et 2 LTr 22



LMSC-HREC D225642-I

Substituting into Eq. (1)

Ell + L 2w Z I [E" LT 2 I

rearranging we get

sw I 2 L L sw I I
LT2 2L7 ~~~~~~~~~~~~(4)

This is the trajectory of the lower advanced switching line with apex occur-

ring at E"W = -LT /I and E"W = 2LT/I. Similarly the trajectory of the

upper advanced switching line is

[E LT I t + 2LT/I] (5)
SW~~ I 2L Lsw + L/

Its apex occurs at E" = -LT /I and E = -2Lr/I. These advanced
SW SW

switching lines are the commanded switching lines required in the presence

of a time delay. They are shown in Fig. 2-7.

E- E

Advanced Switching
Line (Commanded)

2 _Optimum Switching
Line (Actual)

Fig. 2-7 - Phase Plane Representation of Advanced Switching Lines
to Compensate for Time Delays

2-13
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Equations (4) and

(no time delay).

(5) reduce to the optimum switching line when T' = 0

- E "sw 2L k-swi

sw = -2L rw]

lower switching line

upper switching line

or

E sw = - EW IESWI
sw 2L s wI (6)

Implementation of Eqs. (4) and (5) is considerably different from that of Eq.

(6) and would require a major reprogramming effort. However, for most

cases, the time delay and L/I are fairly small so that Eqs. (2) and (3) can

be approximated by:

SW SW

E -7E
Esw s

E - E" + E" T
SW SW SW

The approximated switching lines can be written as

E" +E T -- iE i + " 7T = - Ii" sw sw 2L sw SWI

which has the same form as Eq. (6). The only change made in the raw con-

trol law was to replace E by E + E Tr.

The objective of the zero velocity control law is to eliminate limit

cycles and to provide a sufficient buffer for the analog computer noises.

The presence of time delay can cause unnecessarily large residue velocities

due to excessive firing. These large residue velocities often lead to fast

drift and make the system more oscillatory. In order to prevent this

2-14
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shortcoming, the commanded no-firing regions inside the deadzone and in

the first and third quadrants on the E, E plane were enlarged (see Fig. 2-8).

The enlarged areas correspond to that velocity increment, AV, which would

result from continuous firing for a time span of sampling period plus time

delay. This change in the zero velocity control laws ensures that the velocity

of the system in the second and fourth quadrants is always small, thus de-

creasing drift and making the system less oscillatory. Note that the actual

no-fire region remains unchanged.

Translation control for automatic docking is accomplished using the

two-burn translation logic developed in Ref. 2. This logic attempts to com-

plete docking in a specified (input) time using a maximum of two burn

periods in each axis. A separate deadzone logic holds the docked position

once it is reached. This deadzone logic acts independently in each axis

and requires that the chaser stay in local vertical attitude hold during

automatic docking. This system produces minimum fuel docking transla-

tion when coriolis, gravitational and centrifugal terms are neglected in the

translation equations.

2.5 MANUAL CONTROL

Chaser control during the manual mode is modeled after the Lunar

Module Reaction Control System used in Ref. 1. Translation maneuvers

are made by commanding control forces along chaser body axes. The

chaser is permitted to coast when translation commands are zero. The

attitude control logic which is described below maneuvers by rate com-

mands. System delays are simulated by delaying all commands by 0.14

second before their effect is felt through the thrusters.

The chaser angular rates are compared with pilot commanded rates,

Pc' Qc and Rc , from the attitude hand controller. The resulting error

signals, Ei, are fed back to the control logic. The subscript i will be

used throughout this discussion to represent the chaser body (principal)

axes, XB, YB and ZB.

2-15
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There are two modes of manual attitude control, a maneuvering mode

and an attitude hold mode. The maneuvering mode is used whenever there

are rate commands from the attitude hand controller i.e., whenever P c Qc'

and R are not all equal to zero. In this mode only the angular rate errors
c~~~~~~~~~~~~~~~

about the three-body axes, E., are fed back. These three rate errors are
1

tested against a rate error deadband, as shown below.

TC i Negative
REDBi -E

1

0

-REDB.
1

TC. Positive
1

If E. is greater than REDB. then the manual control logic calls for a negative
1 1

torque about the i axis. If E. is less than -REDB. a positive torque is called
1 1

for. The REDB. are computed internally as a function of chaser inertia char-
1

acteristics, control torques, and digital sample time.

REDB. = (5.) (DEL.)
11

DELi = (TSAMP)(TCi/Iii)

Note that vehicle attitude is allowed to drift in this mode.

Whenever there are no rate commands (i.e., P = Q = R = 0) the atti-
c C C

tude hold control laws are used. In this mode attitude errors about the body

axes are fed back along with the angular rate errors. Figure 2-9 illustrates

the phase plane for the attitude hold mode. The parameters which define the

torquing regions and coast region are computed as shown in the following:

2-17
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(Outer Rate Limit)i = (5.)(DEL i )

(Inner Rate Limit)i = (3.)(DELl)

(Rate Crossover)i = DELi

(Error Crossover)i = 1.4 degrees

A new holding attitude is computed every time that the simulation switches

to manual attitude hold. When the attitude hold mode is entered, the program

starts comparing the three angular rate errors to the outer rate limit in the

attitude hold phase plane. As soon as the magnitude of all three E. are less
1

than their corresponding outer rate limit, the holding attitude is set equal to

the present inertial attitude. The manual attitude hold mode will then main-

tain this attitude within the designated deadbands until attitude maneuvers

are commanded.

Note that if the attitude rate commands are equal to or less than the

outer rate limit, then there will be no attitude coasting when the attitude hand

controller is returned to zero. If the rate commands are greater than the

outer rate limit however, the astronaut must allow for some attitude coasting

after he returns to attitude hold.

Z.6 SIMULATION INPUT-OUTPUT

All program input and output has been converted from English to metric

units. Inputs are made in three ways- potentiometer settings, card reader inputs,

and typewriter inputs. Chaser mass and inertia data, control torque magnitudes,

and target orbital rate are input to a digital POT-SET routine. This routine

then computes the required potentiometer settings and automatically sets all

the required analog potentiometers. Data read in on cards include option

flags, control system variables, docking geometry, sensor errors, digital

sample time, and initial chaser attitude, velocity, and angular velocity.

Chaser initial position, run identification and desired docking time are typed

inputs.
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The simulation stops automatically when the chase vehicle has success-

fully docked or crashed. Runs can also be terminated through a manually

controlled switch or at a time specified by typed input. Upon run termination

the digital computer prints out the case number, the initial conditions, and

the reason for termination- successful docking, missed attempt, or run

flagged off. Also included in the printout are all the end conditions needed

to evaluate the docking run, which are:

* Run time

* Fuel consumed and number of jet firings
- this is presented separately for auto-
matic mode, manual mode, attitude control,
and translation control

* Chaser position, velocity, orientation, and
angular rate

* Lateral offset from docking axis

* Lateral velocity

* Roll misalignment

* Axial misalignment

· Axial angular rate.

Some of these docking parameters are illustrated in Fig. 2-10, and the corre-

sponding Apollo design values are listed.

Two strip chart recorders with eight channels each are used to record

time histories of some of the docking variables. Usually position, velocity,

angular rates, and jet firings are recorded.
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Parameter

Closing Velocity

Lateral Velocity

Lateral Offset

Axial Misalignment

Axial Angular Rate

Roll Misalignment

Axial Misalignmen

Apollo Design Values

0.030 to 0.3048 m/sec

0.1524 m/sec

0.3048 m

10.0 deg

+1.0 deg/sec

+10.0 deg

it

,-Lateral Offset

Velocity

Lateral
Velocity

LM/ATM c.m.

Fig. 2-10 - Docking Parameters Computed After Run Termination

Y.1
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Section 3

SIMULATION RESULTS

Hybrid simulation runs were made using the nominal target and chaser

data to verify the program and investigate certain system parameters. Pilot

capability to perform during manual control was limited because no hand con-

trollers were available. Manual runs did however verify program subroutines

and permitted a qualitative evaluation of the nominal chase vehicle for manual

control.

In all manual runs the pilot was located at the chaser center of mass

with his viewing direction along the chaser x-axis. Runs showed that manual

docking within Apollo design accuracies was possible using a crude switchbox

(six three-position switches) for attitude and translation commands. These

runs also indicated that the nominal control forces (7340 Newtons) are suitable

for accurate manual translation. They produce linear accelerations of 0.06

meters per second . The nominal control torques (based on two jets per axis)
2

produce angular accelerations of about 0.18 degree per second . These are

undesirably low for manual maneuvers. The low accelerations require long

attitude maneuvering times which permit error buildup in the non-maneuvering

axes. This puts a greater strain on the pilot. Runs with increased control

torques (four and six jets per axis) improved manual controllability but re-

sulted in greater fuel consumption.

Automatic docking runs were made to show the effects of initial chaser

position, attitude, allowable docking time, and disturbance forces on fuel re-

quirements. In all these runs initial chaser position is expressed in the local

vertical coordinates illustrated in Fig. 2 - 1.

Figure 3-1 shows the fuel required to automatically dock from 305 meters

(1000 feet) as a function of docking time. Initial chaser range was equally divided

3-1

LOCKHEED -HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225642-I

Initial Position

.x(1) = 176m

x(2) = 176m

x(3) = 176m

0 Cross-coupling terms omitted

A Cross-coupling terms included

5000 , ...............

Thrust/Axis = 7340 Newtons

4000 . . ..

X; -is2< -- 
A 3000

-4

j 2000

See Fig. 3-2 for time histories
of chaser position and velocity -

1000 · -
- i .. :! .'. -;: i s . :, , ,:,~~: 

J Dow'. He ._ t_ .1 .. _....,.; _.. _ j ........ ,.,, '.

a , I ,. i ' i,: ̂ , -', ' ' i 1 i ':_ I .
100 140 180 220 260 300

Docking Time (sec)

Fig. 3- 1- Fuel Required to Automatically Dock from 305 Meters
Distance vs Time to Dock
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between the three local vertical axes. Chaser attitude errors and velocity

were initially zero. Runs were made both neglecting and including the

coriolis, centrifugal, and gravitational disturbance forces. These curves

show the large fuel savings which result when docking time is increased (i.e.,

coasting velocity is lowered). The effect of the disturbance terms is primarily

to lengthen docking time rather than increase fuel consumption. The fuel used

for attitude control increased with docking time but was always less than 7%

of the total. Figure 3-2 presents the time histories of chaser position and

velocity for the last pair of points in Fig.3-1. As expected, the disturbance

effects are felt in the x(l) and x(2) axes and not in the x(3) axis.

Table 3-1 shows how docking time and fuel requirements are affected

by the chaser approach axis. In all six runs the chaser initial range was

300 meters and the desired docking time was 300 seconds.

Table 3-1

TO DOCK VS APPROACH AXIS

Figure 3-3 shows how docking fuel requirements increase

docking time is kept constant. This figure also shows the

velocity for each run.

with range when

maximum coasting

3-3
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Initial Chaser Time to Dock Fuel to Dock
Displacement Axis (sec) (N)

+x(1) 324 3780
-x(l) 322 3110

+x(2) 298 3130
- x(2) 296 3340

+x(3) 295 1670
- x(3) 296 1430
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No Cross ,ouping

I- I r.- n ¥ ..- -...I I'.¥I I-_

Time (sec)

Cross Coupling Included

Fig. 3-2 - Time Histories of Chaser
Shown in Fig. 3-1

Position and Velocity for Runs
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Although the results shown above include the fuel required to maintain

attitude hold, the runs were all initialized with zero attitude errors and rate

errors. Figures 3-4 and 3-5 show the fuel required to eliminate attitude

errors and attitude rate errors, respectively.

Simulation runs were made using the switching option (real time switching

between automatic and manual control). One sequence which showed promise

was to maneuver automatically to a rendezvous point near the docked position

and then switch to manual control for final alignment and translation. This

method gives low fuel consumption and good accuracy.

8000

6000

4000

2000

0 200 400 600 800 1000

Initial Range (all along -x(l) axis) (m)

4 u
a)

'U

3 "~
00

to-4

2 z
o

.,,

Xd
0

U

E

X

_ ~I I 1 2 
Time to Dock * 300 sec

Fuel ? I

M/ax. Coasting Velocity

Fig 3- - uelReqire/toDoc an i I

Fig. 3-3 - Fuel Required to Dock and Maximum Coasting Velocity
vs Initial Range Along -x(l)
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4000

3000

2000

1000

0 10 20 30 40 50
Initial Attitude Errors in Each Axis (deg)

Fig. 3-4 - Fuel Required to Eliminate Initial Attitude Errors
I

6000 / 

Initial Attitude Errors = 0

2000

1 2 3

Initial Attitude Rates in Each Axis (deg/sec)

Fig. 3-5 - Fuel Required to Eliminate Initial Attitude Errors
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Section 4

CONCLUSIONS AND RECOMMENDATIONS

A versatile hybrid simulation of orbital maneuvers was developed during

this study. The program simulates the six-degree-of-freedom motion of a

chase vehicle as it maneuvers relative to an orbiting target. A cylindrical

representation of the target is displayed on a CRT display scope so that the

maneuvers can be visually monitored by a pilot located in the active vehicle.

Both automatic and manual control can be simulated. A third option includes

real time switching between automatic and manual control at the pilot's discre-

tion. System time delays (presently 0.14 second) are included to represent

delays between commands and thruster firings. Another option permits simu-

lation of sensor errors so that their effect on accuracy and fuel consumption

can be assessed. General program application has been maintained where

possible through modularization and the retention of system parameters as

program inputs. Computer runs involving pilot interaction must be made in

real time; however those using only automatic control can be made at accel-

erated run speeds to achieve a savings in computer time.

Computer runs using nominal chaser and target data verified the opera-

tional status of the simulation. Both manually and automatically controlled

docking runs achieved accuracies within Apollo design limits. Manual attitude

controllability was improved at the expense of fuel consumption by increasing

the control torques. Automatic docking generally required much less fuel. A

two-step docking sequence which yielded low fuel consumption and high accuracy

was as follows:

1. Maneuver automatically to a rendezvous point near the docked
position.

2. Switch to manual control for final alignment and translation.

4-1
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Automatic runs showed the fuel advantage of making maneuvers at low coasting

velocities. The fuel required to eliminate attitude and attitude rate errors of

the nominal chase vehicle was also determined.

Three tasks recommended for continued analysis are described below:

1. Make docking simulation runs to compare the relative merits
of purely automatic control, purely manual control, and a com-
bination of both. Also define desirable switching points between
automatic and manual control. These runs will require the use
of hand controllers for manual translation and attitude commands
to add realism to the manual mode. These controllers need
supply only on-off capability in the six degrees of freedom. Im-
provements in the manual mode including minimum impulse bit
capability and greater control logic sophistication are needed
to reduce fuel requirements.

2. Add the capability to simulate remote docking so that free-
flying unmanned Research and Applications Modules (RAM' s)
can be simulated docking to the space station. This would
draw heavily from the remote docking work already com-
pleted during Appendix B of the present contract.

3. Modify the program to allow simulation of satellite inspection
and retrieval maneuvers. Include the effects from discrete
and continuous mass shifts.

4-2

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225642-I
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Appendix A

HYBRID SIMULATION DIGITAL FLOW CHARTS

AND SUBROUTINE DESCRIPTIONS
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Appendix A

A. 1 GENERAL

This appendix describes the digital subroutines used in the hybrid sim-

ulation. Section A.2 presents a glossary of terms used in this description.

Variable dimensions are shown in parentheses if they are greater than one.

The glossary includes numerical values for those variables which are set

in data statements.

Sections A.3 through A.7 describe five of the major digital subroutines

including subroutine flow charts. In these flow charts I is a free index and

takes on values of 1, 2 and 3 respectively unless otherwise stated. An

asterisk (*) preceding a statement identifies it as a hybrid operation. State-

ments enclosed in quotation marks are messages printed out on the typewriter.

Simulation timing and interrupts are described in Section A.8

A-1 I
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A.2 GLOSSARY OF TERMS

Term

ABRNA, ABRNT

ADC (16)

ADSCAL (16)

ALFAF

ALT

ANS

ASTART

AXMIS

BIXYZ(3)

BRNA, BRNT

BV(3, 3)

D(3), DD(3)

DAC( 16)

DASCAL(16)

Description

jet firing time during automatic portions of the docking
sequence for attitude control and translation, respectively.

hybrid variables which are sent from the analog side to
the digital side.

scaling factors relating analog and digital values of ADC(16)
(see Table A-1).

scale factor to adjust the display field of view.

orbital altitude of target (5.0003 x 105m).

typed input (yes or no) which determines if the simulation
run will be automatically stopped at some input time
(TFLAG).

number of jet starts during automatic portions of docking
sequence.

axial misalignment of the chaser at the end of the docking
run.

chaser principal moments of inertia (see Table A-Z).

jet firing time for attitude control and translation,
respectively.

transformation matrix from chaser to local vertical
coordinates.

chaser position and velocity relative to the rendezvous
point expressed in jet axes.

hybrid variables which are sent from the digital side to
the analog side.

scaling factors used in subroutine ALOGIC to relate analog
and digital values of DAC(16) (see Table A-l).
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Description

DEL(3)

DISTLV(3)

DISTB(3)

DSSCAL( 16)

E(3)

EDOT(3)

EPSI(3)

EYE

E1DD

E2DD

EZS

F(3)

FB(3)

FBRNA, FBRNT

FCXP, FCYP,
FSXP, FSYP

FFA

FLAG 1

FSTART

maximum change in chaser body rates during one
digital sample time.

chaser position relative to the rendezvous point in local
vertical coordinates.

chaser position relative to the rendezvous point in body
coordinates.

scaling factors used in subroutine HLOOP to relate
analog and digital values of DAC(16) (see Table A-1).

chaser attitude errors.

chaser attitude rate errors.

Euler angles used to input the initial chaser attitude.

inclination of target orbit (0 deg).

attitude error deadband for automatic attitude control.

used to define automatic attitude control deadzone.

rate limit during automatic attitude control.

control forces acting on chase vehicle in local vertical
coordinates.

control forces acting on chase vehicle in body coordinates.

jet firing time for attitude control and translation, respec-
tively.

factors used to generate the circle projections in the dock-
ing target display.

fraction of TSAMP used for minimum impulse bit jet firings.

a manually controlled flag which terminates the run.

total number of jet starts (floating point).
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Description

FUEL

FX, FY, FZ

FXYZ(3)

GGCON(3)

GN(9)

GSCAL

HBRNA, HBRNT

HSTART

ICHAN

IDENT

IDOCK

IERR

IFL(6)

IFL6I

IGN

IMAN

total fuel consumed during docking sequence.

translation commands (+1, -1, 0) in chaser body co-
ordinates. These come from the pilot through the
hand controller during manual control.

control force per jet along the chaser body axes.

constants used to calculate gravity gradient torques
on the chaser.

current set of gaussian variables from table look-up.

chaser position scaling factor to permit higher accuracy
at close range.

jet firing times during manual portions of the docking
sequence for attitude control and translation, respectively.

number of jet starts during manual portions of docking
sequence.

channel number (ADC or DAC) which caused flag IERR
to be set.

typed input for run identification.

f+1 successful dock.

program control flag I 0 not yet docked.

-1 missed attempt.

a flag to indicate an overload in the ADC or DAC channels.

input program control flags (described in Table A-3).

f 0 = automatic control.
input value of IFL(6) 1 = manual control.

counter (1-1000) for gaussian variables.

flag which detects a change in control mode (automatic
or manual).
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De s c ription

INITAL

IPGMGR, ISTEER

JET(I)

/JETPRV

JJT(3)

MANCL

N

ONE(3)

OPER

ORL(3)

P(3)

PI

PMI

PM2

PQRCMD

QBR(4)

QIB(4)

program control flag (negative the first time through
subroutine HLOOP).

program control flags.

state of attitude control jets commanded by automatic
control laws (+1, 0, -1).

non-FORTRAN variable used to switch between automatic
and manual control and controlled by the pilot.

state of attitude control jets sent to the analog (+1, 0, -1).

flag which is non-zero during manual attitude maneuvers.

counter for digital clock.

upper switching line for manual attitude hold control laws.

orbital period of target in seconds.

attitude rate limit under manual control.

initial chaser body rates (RATEB(3)).

3.14159.

range from chaser to target docking collar at which run
terminates.

location of rendezvous point along target docking axis
measured from the target center of mass.

a flag which is greater than zero whenever attitude changes
are commanded under manual control.

quaternions relating chaser attitude to chaser reference
attitude and used to compute attitude errors during auto-
matic control.

quaternions relating inertial coordinates to chaser body
coordinates.
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Description

QIBD(4)

QIV(4)

QVB(4)

QVR(4)

RADIUS

RANG, RANGR

RATEB(3)

RE

REF(3)

RERR, RRERR

RF(3, 3)

RHOZM, RHOZP

RNATT

RNTRAN

ROLMIS

RPD

desired values of QIB(4) for periods of attitude hold
under manual control.

quaternions relating inertial coordinates to local vertical
coordinates.

quaternions relating local vertical coordinates to chaser
body coordinates.

constant quaternions which describe the target attitude
relative to inertial or local vertical coordinates.

radius of the end circles for the cylindrical representation
of the docking target.

chaser to target range and range rate, respectively.

angular rates about chaser body axes.

radius of the earth-spherical equivalent (6.36743 x 106m).

Euler angles relating inertial or local vertical coordinates
to target coordinates.

per unit error in measuring chaser to target range and
range rate, respectively.

transformation matrix from inertial or local vertical co-
ordinates to target coordinates.

distances from target center of mass to the rear and front
faces of the cylindrical representation, respectively.

number of jets per axis used to produce chaser control
torques.

number of jets per axis used to produce chaser control
forces.

chaser roll misalignment at the end of the docking run.

radians per degree (0.017453292).
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Description

RSLOPE

S(3)

SIGMA(10)

SIGR, SIGRR

SPECI

STARTS

TAB(1000)

TAUTO

TB2T(3, 3)

TCMAG(3)

TDELAY

TFLAG

TG(3)

THRUST

TIME

TIMEF

TIMEFI

TMAN

TMARG

TMIN

TORQN(3)

display parameter to size the rear face of the target.

slope of the manual attitude control law switching curve.

standard deviations to describe sensor errors.

standard deviation for range and range rate measure-
ments, respectively.

fuel specific impulse (352 sec).

total number of jet starts (integer).

input table of gaussian numbers.

time spent under automatic control.

transformation matrix from chaser to target coordinates.

magnitude of chaser control torques.

system time delay between control commands and firing
of the jets.

time at which the simulation run is to be flagged off.

gravity gradient torques about chaser body axes.

thrust per control jet (7340N).

time elapsed since start of docking run.

desired time to complete docking; must be > TMIN.

input TIMEF.

time spent under manual control.

safety margin on TMIN.

minimum time required to achieve automatic docking.

control torque per jet about chaser body axes (see Table
A-Z).
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Term

TSAMP

TWO(3)

U(3)

UDOT

VB(3, 3)

VMU

V1M(3), VZM(3)

VZ0(3)

X(3), XDOT(3)

XB(3), XBD(3)

XBM(3), XBDM(3)

XCLZP, YCLZP

XDOCA, XDDOCA

XIRL(3)

XLATOF

XLATVE

XM

Description

digital sample time.

lower switching line for manual attitude hold control
laws.

state of the translation control jets (+1, 0, -1).

target orbital rate.

transformation matrix from local vertical to chaser
coordinates.

gravitational constant times the mass of the earth
14 2

(3.991 x 1014 N-m /kg).

translation dead-zone position and velocity boundary,
respectively, in each local vertical axis.

initial chaser velocity (XDOT(3)) in local vertical co-
ordinates.

chaser position and velocity, respectively, in local
vertical coordinates.

chaser position and velocity with respect to the target
center of mass in chaser body coordinates.

measured values of XB(3) and XBD(3) with sensor
errors included.

display parameters which locate the front face of the
docking target.

chaser position and velocity relative to the target co-
o rdinates.

inner rate limit for manual attitude control laws.

chaser lateral offset from the docking axis.

chaser velocity perpendicular to the docking axis.

chaser mass (1.26443 x 105kg).
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De s c ription

XQIB

XSCR(3)

XSLOPE, YSLOPE

XSPOT, YSPOT

z

square root of the sum of the squares of QIB(4); should
be equal to 1 for orthogonality.

position of pilot observation point in chaser body coordinates.

display parameters which determine the target orientation.

display parameters to locate the bright spot on the target
front face.

target orbital position at the end of the docking run.
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A.3 SUBROUTINE MAIN

MAIN is primarily a bookkeeping routine. It performs all normal (non-

error) input and output operations and does much of the initialization required

before each run. Upon run termination it processes the output data, prints it

on the in-line printer, and then returns program control to the typewriter.

Figure A-1 shows the flow of subroutine MAIN. Other subroutines which are

called from MAIN are briefly described below in the order that they are called.

COEF - Computes constant parameters for the automatic
attitude control logic.

BEGIN - Performs program initialization including the
computation of initial quaternions and trans-
formation matrices.

AUTOIN(D, DD) -Initializes automatic translation control logic
(see Section A.4).

ALOGIC - Sends chaser initial conditions (position, velocity,
attitude, and attitude rate) to the analog computer.

HLOOP - Performs all digital operations required during
the simulation. (see Section A.5)

MAYMUL - A matrix multiplication routine which computes
(0, A, B, C, N) the matrix [C] as follows:

[C] = [A] [B]

N is the number of columns in[C]

A.4 SUBROUTINE AUTOIN

AUTOIN is entered everytime that the simulation is switched into the

automatic control mode. This routine initializes the automatic translation

control laws so that docking is achieved at the time originally commanded

(TIMEFI) if possible. If the time available is too small it attempts to dock

in minimum time. A flow chart of AUTOIN is shown in Fig. A-2.
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A.5 SUBROUTINE HLOOP

This is the main hybrid subroutine. It completes the initialization of

each run and then controls all hybrid and digital operations required during

the simulation. Figure A-3 is a flow chart of subroutine HLOOP. Other

digital subroutines which are called from HLOOP are briefly described

below in the order that they are called.

HLQUAT

DISPLV

AUTO

MANUAL

TESTSL
(1, PQRCMD)

TMFCMD

AUTOIN(D, DD)

OUT(1625)

computes range, range rate, rendezvous point
location, and all transformation matrices
required during the run.

computes the 11 variables required to generate
the CRT display. The display equations are
documented in Ref. 3. This routine also checks
to see if docking is completed or if a missed
attempt has occurred.

computes jet commands under automatic control
(see Section A.6).

computes jet commands under manual control
(see Section A.7).

tests for manual attitude rate commands from the
pilot.

tests for the control mode (manual or automatic)
and then tests for manual translation commands
from the pilot.

initializes automatic translation control logic
(see Section A.4)

prints out the contents of the flag register.

The timing of data transfer between the digital and analog computers is con-
trolled by interrupts in such a way as to produce a system time delay of 0.14

second. The timing and interrupts are described in Section A.8.
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A.6 SUBROUTINE AUTO

This subroutine computes the commanded control forces and torques

during periods of automatic control. Figure A-4 is a flow chart of subroutine

AUTO. The three subroutines called from AUTO are briefly described below.

ROTLAW(I)

TJETS(A, B)

MAYMUL
(0, A, B, C, N)

computes the desired state of the torque jets to
maintain attitude hold. This subroutine was de-
veloped in a previous study and is fully described
in Ref. 3.

computes the desired state of the translation jets
to achieve docking using the baseline two-burn
logic. This subroutine was developed in a pre-
vious study and is fully documented in Ref. 2.

matrix multiplication routine described in Section
A. 3.

The torque commands (JJT(I)) and force commands (F(I)) are delayed by 0.14

second before being sent to the analog computer.

A.7 SUBROUTINE MANUAL

MANUAL computes the torque commands (JJT(I)) during periods of man-

ual control according to the switching logic described in Section 2.5. A flow

chart of this subroutine is presented in Fig. A-5.

A. 8 SIMULATION TIMING AND INTERRUPTS

During the simulation program variables are transferred between the

digital and analog computers in the following ways.

1. Sixteen digital-to-analog (DAC) conversion channels.

2. Sixteen analog-to-digital (ADC) conversion channels.

3. Sixteen logical data bits (+ or 0) from digital to analog through the
data word.

4. Sixteen logical data bits (+ or 0) from analog to digital through the
data word.

5. Eight hard-wired sense lines.

A- 12
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This data transfer is pictured in Fig. A-6. Three digital subroutines involved

in the transfer of data (TMFCMD, JETFIR, and TESTSL) are also pictured

and described below.

TMFCMD interrogates the data word from the analog for control
mode (manual or automatic) and manual translation
commands.

JETFIR sends the attitude jet firing commands to the analog via
the data word; also processes all jet firings to calculate
the number of jet starts, translation burn periods, and
rotational burn periods.

TESTSL interrogates the sense lines for manual attitude rate
commands.

Simulation timing is controlled from the digital by the two interrupts

shown in Fig. A-7. The timing sequence for the first 0.54 second of the sim-

ulation is shown in Fig. A-8. Clock interrupts F. and T. represent interrupts
1 1

"FROM" and "TO," respectively.

During F1 (at time = 0 ) the control status (manual or automatic) and

the manual force commands (MFCMD) are sampled in subroutine TMFCMD.

The initial values from the analog are stored in the ADCs at this time also.

The ADCs are inhibited from storing new analog values until the ADC-EBL

line (on the analog) goes high. This occurs every 100 milliseconds (after

t=0). The ADC-EBL pulses are obtained by counting 100 pulses from the

analog 1 kc clock source. The width of the ADC-EBL pulses is determined

by the time required to store the analog values in parallel and sequentially

convert to digital information in the main stream of subroutine HLOOP. The

clock interrupts initiate sampling of the analog information (via the ADCs and

data word) and sending information (via DACs and data word) to the analog.

In order to sample MFCMD at the same time the analog values are

stored in the ADCs (interface), an initial time of 100 milliseconds is counted

A-13
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first. When interrupt F2 occurs the control status (CS) and MFCMD are

sampled in subroutine TMFCMD. Then 40 milliseconds is loaded into the

digital timer. After the 40 milliseconds interval, interrupt T occurs and

the computed information from F1 is sent to the analog in subroutine JETFIR.

The effect of this timing is to produce a delay of 140 milliseconds between the

commands and their effect on the vehicle dynamics. The timer is then loaded

with 60 milliseconds so that the next interrupt (F3) will occur at the same time

that the ADC-EBL line goes high to sample new analog information. The inter-

rupts occur every 40, then 60 milliseconds until the simulation is completed or

aborted. This coincides with the 100 millisecond ADC-EBL pulses.

There is no conflict in timing if the digital computation can be completed

in less than 100 milliseconds because the digital cannot execute the instruction

to store the analog values until the ADC-EBL line goes high. Therefore, the

digital will wait until it can execute the store instruction and then proceed with

the computation. The time to complete the computation is typically less than

40 milliseconds. A third interrupt which operates in HLOOP is shown below.

This interrupt is executed anytime a timing error occurs.

NPTZ

* DISABLE EXTERNAL INTERRUPTS
TIMING ERROR

* STOP DIGITAL CLOCK INTERRUPT

TYPE: "TIMING INTERRUPT"

* RESET INTERRUPT

HLOOP
1000

A- 14
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Table A-1

NOMINAL VALUES FOR ANALOG-TO-DIGITAL
AND DIGITAL-TO-ANALOG SCALING

Table A-2

NOMINAL VALUES FOR CHASER PRINCIPAL MOMENTS OF INERTIA
AND CONTROL TORQUES PER THRUSTER

BIXYZ (I) TORQN(I)
~~I ~(kg-m 2 ) (N -m)

1 4.203 x 106 1.3558 x 10

2 2.052 x 107 Z.8811 x 104

3 2.319 x 10 7 2.5421x 104

A- 15
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I ADSCAL(I) DASCAL(I) DSSCAL(I)

1 0.1 0.00001 1.0
2 0.1 0.000005 1.0
3 0.1 0.000005 1.0
4 50.0 0.025 -1.0
5 50.0 0.025 0.025
6 50.0 0.025 0.025
7 -5.0 0.00005 0.00005
8 -5.0 0.00005 0.00005
9 -5.0 0.00005 0.00005

10 2.0 0.0 1.0
11 2.0 0.0 1.0
12 2.0 0.0 -1.0
13 2.0 0.0 1.0
14 0.1 - 0.0 1.0
15 0.1 0.0 -1.0
16 0.1 0.0 -1.0
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Table A-3

PROGRAM OPTIONS BY INPUT FLAGS - IFL(I)

FLAG ~~~~~~~~~~~~~~~InputFLAG Option DescriptionInplut Value

IFL (1) Target in local vertical hold 1

Target in inertial hold 2

IFL(Z) Perfect sensors . 0

Effect of sensor inaccuracies included 1

IFL(3) Control torques _ 0 0

Baseline automatic attitude control 1

IFL(4) Control forces E 0 1

Translation jets aligned with local vertical axes 2

Translation jets aligned with body axes 3

Same as above and including sensor errors 4

IFL (5) Not currently used

IFL (6) Automatic control 0

Manual control 1

A- 16
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G D
Read: XSCR, EZS, E1DD, RNTRAN, RNATT, PMI,

PM2, TSAMP, TMARG, FFA, RADIUS,
RH0ZP, RH0ZM, ALFAF, VIM, V2M,
SIGMA, IFL(2)

Yes

IFL(2 0 Read: TAB[

No '(

VMU3 = 3.*VMU
RRR = (RE+ALT)**3
UDOT = SQRT(VMU/RRR)
OPER = (2*PI)/UDOT
DELHU = .5*TSAMP*UDOT
GGCON(1) = (VMU3/RRR)*(BIXYZ(3)-BIXYZ(2))
GGC0N(2) = (VMU3/RRR)*(BIXYZ(1)-BIXYZ(3))
GGCON(3) = (VMU3/RRR)*(BIXYZ(Z)-BIXYZ(1))
FXYZ(I) = THRUST*RNTRAN
TCMAG(I) = TORQN(I)*RNATT
EZDD(I) = SQRT((TCMAG(I)/BIXYZ(I))*EIDD(I))
QJ(I) = XM/FXYZ(I)
DEL(I) = TSAMP(TCMAG(I)/BIXYZ(I))
ORL(I) = 5. * DEL(I)
XIRL(I) = 3. * DEL(I)
S(I) = -DEL(I)/(1.4/PI)
CALL COEF

Print: XM, BIXYZ, GGCON, EYE, UDOT, 0PER,
TSAMP, TMARG, FFA, E2S, TCMAG,
SPECI, FXYZ, RADIUS, RHOZP, RHOZM,
ALFAF, XSCR, SIGMA, EIDD, EZDD,
VIM, PMI, V2M, PM2

* SELECT STOP
* CLEAR LOGIC PANEL FLIP-FLOPS
* SELECT POT SET
* SELECT SECONDS
* SELECT MEDIUM
* SELECT RUN

(0)
Read: IFL, EPSI, REF, P, V20, CVl,CV2, CV3 

t
IFL6 1 = IFL(6)
EPSI(I) = EPSI(I)* RPD
REF(I) = REF(I) * RPD

(1)
Type: "IDET" Accept: IDENT
Type: "TIMF" Accept: TIMEF
Type: "X(I)" Accept: X(I)
TFLAG = I.E+6
Type: "IS THIS RUN TO BE FLAGGED 0FF?"
Accept: ANS

Yes
ANS = 'NO" 

No/

Type: "TFLAG" Accept: TFLAG

Fig. A-I - Flow Chart of Subroutine MAIN

A-17
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* SELECT INITIAL CONDITI0N
* CLEAR ALL DAC REGISTERS
* SET C0NTR0L LINE 0
* RESET CONTR0L LINE 1
* SET C0NTR0L LINE 6
* STEERING AND CONSOLE SELECTION
* ZER0 DATA WORD T0 ANAL0G

I ~~~~~I
IFL(6) - IFL6I

Print: IDENT, IFL, X, VZO, EPSI, REF, P. TIMEF

CALL BEGINI I~~~~_

| 17 CALL AUT0IN(DISTLV,XD0

No i 4 Yes
FL(4) > > A 

T) [ 18 CALL AUTOII

~,1~

N(DISTB, XBD) 

XQIB = SQRT(QIB(I)**Z+QIB(2)**2+QIB(3)**2+QIB(4)**2) I

Print: QIB, XQIB, QIV, QVB, QBR, QVR
I I~~~~~~~~~~~I

CALL AL0GIC
1_ , CALL HL00P

Yes /
I^ sPGMGR = Z

\/No

Yes No
r~ 9MAN 

TMAN = TIME - TAUT0
ABRNA = ABRNA * TSAMP
ABRNT = ABRNT * TSAMP
HBRNA = FBRNA - ABRNA
HBRNT = FBRNT - ABRNT
HSTART = FSTART - ASTART

v

TAUT0 = TIME - TMAN
HBRNA = HBRNA * TSAMP
HBRNT = HBRNT* TSAMP
ABRNA = FBRNA - HBRNA
ABRNT = FBRNT - HBRNT
ASTART = FSTART -HSTART

9I~~~~~~~~~~

Fig. A- I - (Continued)
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Z = 2.*HU
XQIB = SQRT(QIB(1)**2+QIB(2)**2+QIB(3)**2+QIB(4)**2)
FBRNA = BRNA*TSAMP
FBRNT = BRNT*TSAMP
FSTART = STARTS
FUEL = (THRUST/SPECI)*(RNTRAN*FBRNT+RNATT*FBRNA)
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w

Print: ID0CK, TAUT0, ABRNA,ABRNT, ASTART, TMAN, HBRNT,
HBRNA, HSTART, TIME, FBRNT, FBRNA, FSTART, TIME,
X, XD0T, XB, XBD, RATEB, E, ED0T, FUEL, FBRNA,
FBRNT, RANG, RANGR, STARTS

ICALL MAYMUL(0, TB2T, XB, XDCA, 1)
CALL MAYMUL(O, TBZT, XB, XDD0CA, 1)
CALL MAYMUL(O, T(XDCA(2) XBD, + XDD0CA(3) ** 2)
XLATFVE = SQRT(XDDOCA(2) ** 2 + XDD0CA(3) ** 2)

XLATVE = SQRT(XDDCA() ** 2 + XDDCA(3) ** )

f.,

<

* SELECT IN

Type: "ISTEER = 1,2, 3; TYPE, READ, STOP"

Accept: ISTEER

!

ISTEER = 0
* CLEAR ALL DAC REGISTERS
* SELECT P0T SET
ADVANCE PRINTER 5 PAGES

0

I

Fig. A- I - (Concluded)
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Print: XLAT0F, XLATVE, R0LMIS, AXMIS, TG, FB, F, QIB. XOIB.
QIV, QVB, QBR. GN. XSL0PE, YSLOPE, RSLOPE, XSP0T,
YSP0T, FSXP, FSYP, FCYP, FCXP, XCLZP, YCLZP,
MANCL, JJT, PGRCMD, IMAN

9~
( fSTOP )
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Fig. A-2 - Flow Chart of Subroutine AUTOIN(D, DD)
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SUBROUTINE HL00P)

Yes

No

>4

(
-e

<I

I IFL(6) = "/JETPRV', I

+

IFL(6) = M

1

f_r FX = FY = FZ = O 

-r. , A 
1) a

Fig. A-3 - Flow Chart of Subroutine HLOOP

A-21

CLEAR ALL INTERRUPTS
STORE ADDRESS OF "INTRTPZ+I" IN '62
SET ENABLE FLAG
ENABLE EXTERNAL INTERRUPTS

* STOP INTERROGATING INTERRUPTS
CALL TESTSL (1, PQRCMD)
INITAL = 0

* BL0CK TRANSFER DAC'S 0-15
* RESET FLAG 1
* HALT PR0CEDE ON "EXECUTE"
* START INTERROGATING INTERRUPTS
* STORE ADDRESS OF "FR0M+I " IN '46

STOP DIGITAL TIMER
* LOAD TIMER WITH 100 MILLISEC
START DIGITAL TIMER
CALL TMFCMD
PERMIT EXTERNAL INTERRUPTS

( 0)
: SELECT 0PERATE
* RESET ENABLE FLAG
* LOAD ADC(16) INTO INTERFACE
* WAIT FOR TIMING INTERRUPT

(all normal interrupts occur here)

l
TAUT 0 = TIME - TMAN

IMAN = I
FSTART = STARTS

FBRNA =BRNA
FBRNT= BRNT
ABRNA = FBRNA - HBRNA
ABRNT - FBRNT-HBRNT

ASTART = I'START - HSTART

TMAN = TIME - TAUT 0

IMAN = 0
FSTART = STARTS

FBRNA = BRNA
FBRNT = BRNT
HBRNA = FBRNA-ABRNA
HBRNT = FBRNT-ABRNT
HSTART = FSTART-ASTART
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IR<I

*' SELECT 0PERATE
ENABLE EXTERNAL INTERRUPTS

26

Fig. A-3 - (Continued)

A-22

RATEB(1) = ADC(1)*ADSCAL(1)
RATEB(2) = ADC(2)*ADSCAL(2)
RATEB(3) = ADC(3)*ADSCAL(3)

X(1) = ADC(4)*ADSCAL(4)*GSCAL
X(2) = ADC(5)*ADSCAL(S)*GSCAL
X(3)= ADC(6)*ADSCAL(6)*GSCAL

XD0T(1) = ADC(7)*ADSCAL(7)
XD0T(2) = ADC(8)*ADSCAL(8)
XD0T(3) = ADC(9)*ADSCAL(9)

QIB(1) = ADC(10)*ADSCAL(10)
QIB(2) = ADC(l1)*ADSCAL(1 1)
QIB(3) = ADC(12)*ADSCAL(IZ)
QIB(4) = ADC(13)*ADSCAL(13)

ED0T(1) = ADC(14)*ADSCAL(14)
EDOT(2) = ADC(I 5)*ADSCAL(1 5)
ED0T(3) = ADC(16)*ADSCAL(16)



LMSC-HtREC D.'Z5642-1

(_
CALL HLQUAT

TG(I) = GGC0N(1) * VB(2, 1) * VB(3, 1)
TG(2) = GGC0N(2) * VB(1, 1) * VB(3, 1)
TG(3) GGC0N(3) * VB(I, 1) * VB(2, 1)

CALL DISPLV

; N oIL6)~

* RESET ENABLE FLAG
FB(1) =FX*FXYZ(I)
FB(2) = FY*FXYZ(2)
FB(3) = FZ*FXYZ(3)
CALL MANUAL

CALL AUT0
FX = U(1)* (ABS(U(I) + .2))
FY = U(Z)* (ABS(U(2) + .2))
FZ = U(3) * (ABS(U(3) + .2))

-r D0 337 .1 = 1,5

I ABS(DAC(J+

I 

Fig. A-3 - (Concluded)

A-Z3

.-!
DAC(I) = DSSCAL(I) * XSL0PE
DAC(2) = DSSCAL2() * YSLOPE
DAC(3) DSSCAL(3) XSP0T
DAC(4) DSSCAL(4) : YSPOT
DAC(S) DSSCAL(5)* TG(2)
DAC(6) = DSSCAL(6) TG(3)
DAC(7) DSSCAL(7) * F(1)
DAC18) = DSSCAL(8) F(2)
DAC(9) = DSSCAL(9)* FI3)

DAC(IO) = DSSCAL(1O) RSL0PE
DAC(11 ) = DSSCAL: I 1) FSXP
DAC(12) = DSSCAL(12)* FCXP
DAC(13) = DSSCAL(1 3):* FSYP
DAC(14) DSSCAL(14)*FCYP
DAC(I15) DSSCAL(1 5) XCLZP
DAC(16) DSSCAL(16) YCLZP
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Fig. A-4 - Flow Chart of Subroutine AUTO
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Yes

E(1 ) = QIB(Z) * QIBD(1) -QIB(1) * QIBD(2) - OIB(4) * QIBD(3)+ QIB(3) QIBD(4)
E(2) = QIB(3) * QIBD(l) + QIB(4) * QIBD(2) - QIB(1) * QIBD(3) - QIB(2) * QIBD(4)
E(3) = QIB(4) * QIBD(1) - QIB(3) * QIBD(Z) + QIB(2) * QIBD(3) - QIB(1) * QIBD(4)

; ~~~ ~~YeSI 
| 1D T(I) >0RL (

NO i JJT(I):= -1 1 1YeS

I~
~~I _ IED T(I) >E

I ~~~~~~Yes 1DN T(I) > -XIRL

NO JJT( I) -+1 | IT (I) <- 0

I~~E CT(Ij < TW0(

314 CONTINUE I

DT( 0T(I) < XIRL(
II .I

~TI~~ I10 CONTINUE 

Fig. A-5 - Flow Chart of Subroutine Manual

Yes

Yes
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Analog
Console

Analog Lines

Data Word

Fig. A-6 - Data Transfer During the Simulation
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INTERRUPT

"FROM"

INTERRUPT

"TO"

Fig. A-7 - Normal Timing Interrupts

A-27
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RESET ENABLE FLAG
STOP DIGITAL TIMER
LOAD TIMER WITH N
START DIGITAL TIMER
STORE FLAG REGISTER IN 3003S
STORE ACCUMULATOR IN 3050S
STORE ADDRESS OF "TO+1" IN '46

CALL TMFCMD

N = 6000 (60 millisec)
RESTORE FLAG REGISTER FROM 3003S
RESTORE ACCUMULATOR FROM 3050S
RESET INTERRUPT
ENABLE INTERRUPTS
RETURN TO "MAIN STREAM"

RESET ENABLE FLAG
STOP DIGITAL TIMER
LOAD TIMER WITH N
START DIGITAL TIMER
STORE FLAG REGISTER IN 3021S
STORE ACCUMULATOR IN 3050S

CALL JETFIR

BLOCK TRANSFER DAC'S 0---_15
N = 4000 (40 millisec)
STORE ADDRESS OF "FROM+1" IN '46
RESTORE ACCUMULATOR FROM 3050S
RESTORE FLAG REGISTER FROM 3021S
RESET INTERRUPT
ENABLE INTERRUPTS
RETURN TO "MAIN STREAM"
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I [n NI i l i I I| I a

ADC-EBL Pulses

n n ii I1 II I1 I1 I1 I1 ,ll _
F 3 T 2

Clock Interrupts

.2 .24

F T4 3

.3 .34

F
5

T5 4

.4 .44

F
6

T
56 5

I I

.5 .54

Time (sec)

Fig. A-8 - Timing Sequence for
of Hybrid Simulation

the First 0.54 Seconds
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Appendix B

ANALOG EQUATIONS
AND WIRING DIAGRAMS
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Appendix B

B.1 ANALOG EQUATIONS

The chaser equations of motion (translation, rotation, and kinematic)

are shown below as they are solved on the analog computer. In these equa-

tions a dot over a variable indicates its time derivative (i.e., x = position,

x = velocity, x = acceleration). A quantity in brackets, [ ' is a scaled

analog term where 1.0 equals 100 volts.

Translation

2 1)+40,000]rX~)1 +200W~[() + 6000o Lw ()1 4,00[~)
0 . 5 5 0 + 61000 + M 20, 000

(]: 20o + 40,000 [F (2)

[0-5 ] [ ] M 2~~4[0,000

05a :-°2 [oooo3 + 40,000

where,

x (i) = chaser position in local vertical coordinates (m)

M = chaser mass (kg)

O = target orbital rate (rad/sec)

F (i) = control forces expressed in local vertical coordinates (N)

B-1
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Rotation

Automatic Mode

zz y 100QR]

I z

[1 o P] /10 +6+ \T 1-
TC(l + ] 4000 1
10[+5 40

I -I)
= + ZZ XX)

YYI
[100PRJ + (210+6)[ T +51 + (4000) [TG4(2)]

yy 2 * 1\0 yy

= ( : xx ) l0oo PQ + (Z-10+6)
+~ Czz

Manual or Switching Mode

'[ 00Q] + JLT ( + x I10 x- l }LC

= + zz xx
IYY/

[100 PR] +(400o)

I/0T

XX

ITG34 +0LC+ ( IT2 /+

10( lT_ LT.Co ._/.% 

( ŽIXX) [100 PQ] + (0oo_)
T4G03] + ILTC3 +

I
( l )

- ILTC3 -1
1 0 Tz\
I /zz 

[1 0.(l)] = [1OP] - ILP+I [10PC] + ILP-} [1OPC]

[1o.(2)] = [1oQ] - ILQ+l [loQC] + °LQ-I [loQCo]

[IO (3)] = [OR]' - ILR+t [lORC] + ILR- [lOBRC]

B-2
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[1o P]
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where

P,Q,R = angular rates about chaser body axes (rad/sec)
(same as RATEB(i) defined in Appendix A)

PC,QC, RC = angular rate commands from pilot

IXx IyyI = chaser principal moments of inertia (kg-m )

TC(i) = control torques about chaser body axes (N- m)

TG(i) = gravity gradient torques about chaser body axes (N- m)

T x , Ty, T = absolute value of TC(i)
z

LTC 1+, LTC2 +,
LTC3+ = logical variables defined in Table B-1

LP+, LQ+, LR+ = logical variables defined in Table B-2

E(i) = chaser attitude rate errors (rad/sec).

Illegal combinations of logical variables are prevented from occurring.

Illegal sets are those which require opposing jets to fire and result in no net

thrust (i.e., LTC1+ = LTC1- = 1, LP+ = LP- = 1, etc).

Kinematics

[10 QIB(1)1 = - [5P QIB(Z) j [5Q QIB(3) - [5 R QIB(4)]

I10 QIB(2)] = + [5P QIB(1)I - [5Q QIB(4)J+ 15R QIB(3)I

[10 QIB(3)] = + [5P QIB(4)1 + [5Q QIB(1)]- 15R QIB(2)]

1.0 QIB(4)J = [5P QIB(3)I + [5Q QIB(2)J+ [5R QIB(1)

z 2 -2 2 QIB(i)]
2 =QIB(1) + QIB(2) + QIB(3) + QIB(4) [QIB(i)]

where,

i=l, 2 3, 4

QIB(i) = quaternions relating inertial coordinates to chaser body
coordinates

QIB(i) = orthogonalized QIB(4)

B-3
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Table B- 1

LOGICAL VARIABLES FROM DATA WORD WHICH
REPRESENT ATTITUDE THRUSTER FIRINGS

LTC1 + = 1,0 (logical) for positive attitude thrust (P channel)

LTC1 - = 1,0 negative (P channel)

LTC2+ = 1,0 positive (Q channel)

LTC2- = 1,0 negative (Q channel)

LTC3 + = 1,0 positive (R channel)

LTC3- = 1,0 (logical) for negative attitude thrust (R channel)

Table B- Z

LOGICAL VARIABLES WHICH REPRESENT RATE
COMMANDS FROM THE PILOT

LP+ = 1,0 (logical) for positive rate command (P channel)

LP- = 1,0 negative (P channel)

LQ+ = 1,0 positive (Q channel)

LQ- = 1,0 negative (Q channel)

LR+ = 1,0 positive (R channel)

LR- = 1,0 (logical) for negative rate command (R channel)

B-4
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B.2 ANALOG WIRING DIAGRAMS

Symbols used in the analog wiring diagrams are defined in Fig. B- 1.

Diagrams of the translation, rotation, and kinematic equations are shown in

Figs. B-2, B-3, and B-4, respectively.

In Fig. B-2 the analog switches SW001, SW0O1, SWO21, and SW031 are

switched left (L), facing the panel, to decouple the translation equations and

they are switched right (R) to add cross coupling. Control line 1 (CL1) is used

to scale up the analog position values for improved accuracy when all three

axes are less than 45 meters.

The manual command logic is shown in Fig. B-5; display logic is shown

in Fig. B-6, and timing logic is shown in Fig. B-7.

B.3 AUTOMATIC ANALOG SET-UP

A hybrid program is used during set-up of the simulation. This pro-

gram calculates the analog potentiometer values and automatically sets the

potentiometers. It also provides the operator with a check list of required

setup procedures. A listing of this program is presented in Fig. B-8.

Standard symbols are used where possible. Other symbols not previously

defined are:

WI =0X

W2~~W2 = c32

J1 = label of a fixed value

C002 = address of potentiometer No. 002.
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A ·n

B D

A ~~~10

Integrator

A 1

B B 10

Summe r

D =-- * (1*B + 10*A)dt_if

D = - (1* A+10*B)

1A

B- D =-* (1* A+ 10*B)10

High Gain

Track and Store

D
A

B

D = -A if T = 1 (logical)

D = -B if T = 0 (logical)

T

Electronic Switch

Potentiometer

©,
Digital Control Line 6

Fig. B -1 - Symbols Used in Wiring Diagrams
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DAC>
Digital-to-Analog Converter Output

Analog-to-Digital Converter Input

KI o~~~~

At1 
I

Normally Open Contact

Normally Closed Contact

Logical Relay Control

Relay

-A

Multiplier

A

B
E

D = -1.0*B if L=0 (logical)

D = -1.0*B- 10*A if L= 1 (logical)

D=A .B

E =A . B

AND Inv

Fig. B-1 - (Continued)
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A L

Logic Trunk

A
D

B 

Comparator

L = 1 if A> 0 volts

L = 0 if A < 0 volts

D = 1 if (A+B) > 0 volts

D = 0 if (A+B) <0 volts

- R sine

6

GIC
Resolver

Fig. B- 1 - (Concluded)

L
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1 .n - , To b

I i 

I'

Fig. B-2 - Analog Wiring Diagram for Chaser Translation
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Fig, B-3 - Analog Wiring Diagram for Chaser Rotation
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/O , ,4

- o I
e>-a-

-- I !

Fig. B-3 - Concluded
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!

Fig. B-4 - Analog Wiring Diagram for Chaser Attitude
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_0,4b- MiAA BIRD W 7i 7- (,,4-4

is

13

_ /O

'3

_ i/i

g /0

I

7

5

-2

t-f~~~~~i'

-.. \ g 2)/" t),

'j .. ' .\

l2 Dia1ram £or Manual Commands

.e Diagram f or Manual Commands

+1
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-I

i , 4400

-I.
I .

I ~s ~,7,410' I6,

7-A'' __. I

Fig. B-6 - Analog Wiring Diagram for Display Generation
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Fig. B-7 -Analog Wiring Diagram of Timing Logic
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SJOB H-10
$HOI,,IU1,

I 0100)
1.0110)
1, 0200)
1.0300)
1,0310)
1,0320)
1,0330)
1.0400)
1. 0500)

. 0600)
1.0610)
1. 0700)
1,0710)
1.0720)
1 0800)
1,0810)
1.0900)
1,0910)
1.1000)
1.1100)
1.1110)
1.1120)
1.1200)
1. 1300)
1.1400)
1.1500)
1. 1600)

$JOB
SRW ,,SU1

HEESCHEN N8-5C99-i003 2/1/72

JCEXMODE; aCONTINUE-ON-ERROR OPTIONa
1, CONSOLE)
JPSoMODEI
&SPACE SHUTTLE DOCKING STUDYati AMKSAI
aSET DIGITAL TIMER! REO:REODAI
aSET ANALOG TIMER! A=22, Ba22. CS08, Oe086i
&SET'DFG'S TO INV.:
JSJTINPUT;aARE DAC'S OUT OF LOOP TEST?aI&TYPE GOal
AINPUT DATAa
'C=.0090,0B0=,0000
Wi1l.106773E-3 W2=l:,2249465E-6,
M = 1.264426E+5,
TX -* 2.7116E4?4,
TY : 5.7622E+44
TZ : 5,0842E+4,
IXX a 4,2030E+6,
IYY = 2,0520E+7,
IZZ a 2,3190E+7,
PC=.3500jOC=:,3500,RC=.3500,
Jl=.0100J2:=.1000,J33.2500,J4=,4000,J5-.0500;J6=,8300,
J7=,4400,J8=,2380,J9=.4570,J10.,2000,
aCOEFFICIENT CALCULATIONa
C000=J5,C001=6.E+4*W2,C03=40000 .//M'CO=BOC01uOilB . .
CO72=(100.-*TY)/IYY,Ce30=J7,CO31z(10.*TX)/IXX,Ce32(10..*TX)/IXX,
C020=1000,.*W2,C021:J10;,C022=B0,C23=BCCiO{=J2;
Cl1O(l00*..TY)/IYY;Cll?2(10.-*TZ)/IZZC12 2=(100*TZ)/IZZ,;
C200=40000,/M, C201=J5,C202mBO.C203=200.*W.,C210uJ5,C211u42,
C212=4.E*5/IXXC222zB0,C253xJ3,C30ow20o*W1,C302m2.EF6/IYY,
C230mJlC240:J1,C250=J1, C012=40000./M,
C050=PCC220=RC'C231QgC, 
C3$3=Jl,C310:(IZZ-IYY)/IXXC311=JiC312=1.E*6/IXXoC322=BC,
C351=J4 C400=J2,C4Ol=BO'C402=4,E+5/IYyC41lJ2,C41tuBO;
C412=4.E*5/IZZ,C413=8C,C500=BCC501=(IZZ-IXX)/IYY.C5l0=Jl,
C511:2.E*6/IZZC512=(IYY-IXX)/IZZC600=J2,C601=J2,C610=J2,
C611xJ2,C700=J8,C040=J9,C041=J9,
JDJL,OUTPUT!
1: ALIST PROGRAM&
1; &EXECUTE PROGRAM4
SCOEF: aLIST COEFFICIENTS&
JS,JT,OUTPUTI
JPS,MODEI$COEFoSET) aALL POTS SETa:
JS,JT,INPUT; APAUSE TO CORRECT POTSa:ATYPE GOAl
,0004,VERIFYISCOEF,READO aALL POTS CHECKEDa:
NORMAL:
JCLO,0,SET;
JCLO1,0,SET;
4Ct06 ,1,SET;
JSJT,1NPUT;aTYPE GOAl
3,CONSOLEI &EXIT PROGRAMA

Fig. B-8 - Listing of Hybrid Set-up Routine
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